
PMM U.S.S.R.,Vol.45,pp.778-784 
Copyright Pergamon Press Ltd.1982.Printed in U.K. 

OO21-8928/82/6 0778 $7.50/O 

UDC 532.527 

FORMATION OF A JET IN CASE OF NON-STATIONARY FLOW 
OF A PERFECT FLUID FROM A SLIT* 

S.K. BETIAEV 

The problem of flow of a perfect fluid from a slit separating two parallel planesis 
given a mathematical formulation for the case of a submerged jet, as well as for-the 
case of a flow with a free boundary. Various types of flow are classified. The 
results of numerical solutions are compared with experimental data. The phenomenon 
of reversal of the vortex sheet which occurs when the flow rate through the slit is 
reduced, is discussed. The self-modelling problem is solving using the method of 
matching the asymptotic expansions. A cumulative effect is discovered, namely that 
the rate of penetration of a narrow central part of the self-modelling jet exceeds 
the rate of flow of the main part of the jet by one order of magnitude. 

1. We assume that the rate of flow Q of fluid through the slit and the slit width 21, 
are both sufficiently arbitrary functions of time t. To find the unqiue solution we must 

demand that the Chaplygin-Joukovskii condition that the velocity is finite at the sharpedges 
of the slit z = &Z(t), y = 0 holds. Since the fluid particles acquire vertical motion after 
passing the slit edges, a line of tangential discontinuity of velocity will emerge from the 
edges. This will be the vortex sheet, forming the front of the jet. We assume that such 
generalized solutions of the Euler equations with break in the values of the hydrodynamic 
functions at the vortex sheet represent the limiting form of the laminar flow of viscous fluid 
at large Reynold's numbers. 

The flow pattern depends essentially on the initial data. We shall consider a motion 
from the state at rest. If at the initial instant t=O the slit is closed, i.e. Z(0) = 0, 
then a flow pattern is possible in which all fluid particles forming the front of the stream 
pass through the slit and acquire vorticity (Fig.1). If 1 (O)pO, then the particles forming 
at t = 0 a line of contact between the fluids situated in the upper and lower half-plane will 
remain, in accordance with the Lagrange theorem, uncurved (dashed line in Fig.2); the jet 
front will have a mushroom shape, with the free ends of the vortex coiled into two spirals 
(solid lines in Fig.2, t> 0). 

The number of dimensions of the problem can be reduced using the method of integralbound- 
ary equations. This replaces the two-dimensional Laplace equation for the velocity potential 
with the corresponding conditions at the solid boundary and at the jet front at which the 
potential becomes discontinuous, by a one-dimensional integrodifferential equation of evolu- 
tion of the vortex sheet. Since the flow is symmetric about the y-axis, the left half of 
the vortex sheet will be a mirror image of the right half, and we can write equation of the 
latter in the parametric form as z = z(l?,t) where z = .Z + iy and r is the circulationvarying 
along the portion of the vortex sheet in question and counted from its free end. The function 

2211 = 5'1% + c-'I* (1.1) 

maps the region of flow into the outside of the semi-infinite segment Imc= O,O< Re j< 00. 
Figs.2 and 3 show the correspondence of the points. Making use of the symmetry ortheproblem, 
we conclude that the velocity of the fluid on both sides of the cut in the 5 -plane is the 
same, i.e. there are no attached vortices. Consequently, it is in this plane that the influ- 
ence of the solid boundaries of the flow can be accounted for in the simplest manner. 

In order to arrange the flow at the points D([ = 0) and C(c = co) corresponding to the 
points at infinity in the physical plane, we must arrange a point source of strength Q (t) and 
a point sink of the same strength. Thus the solution of the problem depends on the actual 
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form of the defining functions Q(t) and l(t). It appears that the formation of vorticalspiral 
structures with an infinite number of turns at some instant of time t, is connected with the 
nonanaliticityofthese functions at the point t = t,. The complex flow potential W(<,t) is a 
function piecewise continuous at the vortex sheet and determined by the existence of a point 
source and two sysnnetric segments of the vortex sheet 

(1.2) 

The singular integrals along the segments of the vortex sheet are Cauchy type integrals, 
the upper bar denotes a complex conjugate and rO denotes the complete circulation of a single 
segment of the vortex sheet. The Chaplygin-Joukovskii condition is given at the point 5 = 1 
and has the form &i’(l, t)/CJc = 0, or 

Two modes of flow are possible: a flow into a submerged half-space when the motion 
both sides of the stream front must be considered, and a flow with a free boundary 
e.g. a penetration of a stream of water into air. 

of fluidon 
simulating 

2. First we consider the problem of a submerged jet. The densities and total pressures 
of both fluids appearing at the initial instant in the upper and lower half-space shall be as- 
sumed equal. The equation of evolution of the vortex sheet (see e.g. /l/) has the form 

(1.3) 

and the relation connecting z(r,t) and G(lY',t) is given by (1.1). Let us now formulate, for 
the nonlinear singular equation (2.1) with condition (1.3), a conditionally correct problem 
with initial conditions in the usual manner. The solution is sought in the class of piecewise 
analytic functions satisfying the Holder condition; the contour of the vortex sheet is assumed 
simple and smooth. Numerical calculations are carried out using the method of discrete vort- 
ices /2/, with help of the linear regularizer /3/ successfully used in solving the problem of 
detached flow past plane bodies and wings with small aspect ratio. 

Numerical computations have shown that the spiral nucleus of the vortex sheet increases 
in size with time. In the case of a constant flow rate the part of the vortex sheet situated 
near the edges stabilizes and approaches the form corresponding to a stationary jet flow.When 
the flow rate decreases over some period of time, a vorticity of opposite sign may appear, 
which can displace the part of the vortex sheet adjacent to the edge, into the lowerhalf-space. 
The appearance of such reversed vortex sheet rapidly disrupts the flow in the courseofactual 
experiment, and in the numerical computations. 
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Fig.4 depicts the dependence of the dimensionless rate of variation of complete circula- 

tion of a single spiral segment of the vortex sheet d(r,/Q,)/dT on time, obtained by numerical 

methods for the particular case when the flow of fluid through the slit of constant width i 
varies according to the periodic law Q = Q0(2+ 0.5 sin202) where z= rQo/P. After some transition 
process, dl?,idz emerges into a periodic mode. 

A flow of fluid through a slit in the working part of the water pipe was studied experi- 

mentally under various modes of opening the throttle controlling the water flow Q(t).The flow 

was made observable by dyeing the outflowing liquid, or by feeding a dye to the slit edges. 
The number R = Q/v where Y is the kinematic viscosity coefficient, was equal to 2.103. The 
experimental data were used to obtain the relation connecting the dimensionless depth of 
penetration of the jet go/l with the dimensionless time z, for the constant flow rate and I= 
const. Numerical computation for 

Fig.4 

these conditions gave the linear relation y,/l= 2.7~. The 

agreement between the experimental and numerical results is 
satisfactory, and the deviation from linearity insignificant. 

The velocity at the points C and Dat infinity is zero,there- 

fore the pressure at these points (in the flow with a free 

boundary the pressure at the point C is constant) is equal 

to 

where p is the fluid density. Using the equations (1.2) for 

the complex velocity potential, we obtain the limitingvalues 

for the pressure at the points C(~+WJ) and D (5-O): 

At dQldt#O the pressure is infinite. In the case of the attached flow, i.e. when the con- 

dition (1.3) is absent and r,,= 0, widening of the slit leads to lowering of the pressure at 

the point D, and increasing it at Cby the same amount. Narrowing the slit produces the op- 

posite result. In the case of a detached flow we transform the expression for pD using the 

condition (1.3) 

When dQ/dt = 0, then the pressure drop pD -ppc is finite and equal to pi(t). When dI’,/dt> 0, 

we have pi > pc. 

3. If the fluid flow rate is sufficiently low and the rate of widening the slit suffic- 

iently high, then the vertical front of the jet in the scheme depicted in Fig.1 will differ 

little from the segment y = O,-Z(t)<x< Z(t). In this case, or more accurately in the absence 
of formation of spiral vortices, (I f3y/& I<.co) and the linear theory can be used when 

Let us expand the solution in a power series in small parameter E = max (QdtldP) 

2 (F, t; e) = 50 (g, t) + ez, (g, t) + 0 (El), q = x1 + ty, 
(3.2) 

Q (t) = eQ1 (t), r = eg + 0 (es), r. = el’, + 0 (e”) 

From (1.1) it follows that the form of the vortex sheet in the L-planewilldifferlittle 

from the circle ICI=1 
S (g, t; 8) = eie + EL (g, t) + 0 (et) \3.3) 

8=2arccosF, +=+&a-%in+ 

Wesubstitutetheprincipaltermsoftheexpansions.(3.2)and(3.3)into(1.3)and (2.1).TheChaplygin- 
Joukovskii condition (1.3) determines the functional relationship betweenthe total circulation 
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r,(t) and rate of flow Q1(t): 

rr t) 

QI (t) = s ctg + dg 

0 

Terms appearing in the right-hand side of the equation (2.1) are of the order of 
fore the right-hand side can be neglected in determining xO(g,t), and we obtain 

ro = XII (g) 
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(3.4) 

E, there- 

(3.5) 

The solution (3.5) has a simple physical meaning. The displacement of the vertical points 
(i.e. of the points for which r= const) occurs only in the vertical direction since their ab- 
scissa in time independent. The equation of evolution (2.1) yields an ordinary differential 
equation for 1/I characterizing the vertical displacement of the vortex sheet, the right-hand 
side of which is a known function of g and t. provided that the relationship between =a (t?) 
and P,(t) is known. A solution of this equation with boundary condition I/~(,P~,~)= 0 will be 
discussed below, using a concrete example of a self-modelling flow. 

We note that if the abscissas of the vertical points were known at the initial instant 
t = 0 and situated within the range -zo[P,(0)]g so(g)< zo[P,(0)], then the solution (3.5) establi- 
shes the same distribution of the circulation over the z-axis for these points at the later 
instants. In other words, the position of the vertical points on the z-axis is stationary. 
However, "generationtl of vorticity at the sharp edges and the widening of the slit cause the 
appearance of nonstationarity, new vortex points are added to the existing points, and accord- 
ing to (3.5) the horizontal position of these points should be stationary. The relatiom con- 
necting the circulation g= Pl of the generated vortex points and the time t, of their appear- 
ance is obtained from the equation P1= P,(t), which is assumed known. The converse dependence 
of time on the circulation t,= tl(l'J is also assumed known. Since the abscissasofthevortices 
generated at the edges are equal to &tl(tl), the solution (3.5) for a vortex sheet appearing at 
t>O assumes the form 

20 = 1 b, WI (3.6) 

4. In the case of a monotonously opening slit the solution of the self-similar problem 
is of interest. Let the slit width increase according to the power law l(t) = kP, k>O. The 
outflow of fluid is self-similar if the flow rate Q is proportional to P-l. We shall con- 
sider a real case of n> 0.5 when the flow of fluid is finite at the initial instant. We 
introduce the dimensionless variables according to the formulas 

z (r, t) = kt”p (?L), I? = 2nnk2ta”%, r. = 2nnlPt”-‘Go 
Q = 2nnkatP”-lq, Ir = G/G,, 0< m = 2 - I/n< 2 

(4.1) 

Passing in (2.1) and (1.3) to the dimensionless variables, we obtain 

q=iGo 1 5-?.w 
s li--6v.)P dh 
0 

(4.2) 

(4.3) 

The condition of applicability of the linear theory (3.1) holds for q<i. Following (3.2) 
and (3.3), we expand the solution into a power series in terms of the small parameter q: 

p (h; q) = a, (h) + Wl@) + 0 w"), PI = Ql + % (4.4) 

Go = PG, + 0 (b), 6 (h q) = 6% + qL (1) + 0 (q’) 
8, = 2 arccos a,, pL1 = i/2&e-"@+ sin 0,/2 

In the self-similar variables the solution (3.5) has the form 

so = h'/m 

The circulation of the velocity G, is found from the condition (4.3) 

(4.5) 

(4.6) 

1 

G;’ (m) = m s da0 uom - 
0 

yx=q 
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Equating the terms of the order of q in (4.2) to zero, we obtain an ordinary linear differ- 
ential equation for determining the ordinates of the vortex sheet B1 (V: 

1 

(SI -d. 9) sin$=2+GJ(I,m), I&m)=25 
sin Cl,, (h’) dl’ 

co9 ea (k’) - co9 0, (b) ’ Cl0 (h) = 2 arccos Wm (4.7) 

0 

with the boundary condition B1 (1) = 0. 
In the particular case of uniform widening of the diaphragm (m = i) the integrals in the 

right-hand part of (4.6) and (4.7) are calculated in quadratures, and the solution of (4.7) 
is represented in this case by the function 

which has the following logarithmic singularity as h-+0: 

fS1 (h + 0)-t - 2 In h (4.8) 

When h-+0, the integral 1(&m) is finite if m> i and has a power singularity if m _C 1 
In the latter case (m <I) equation (4.7) yields 

fil (h --f 0) --f const hl-l;” (4.9) 

Thus the velocity at the center of the self-similar jet calculated according to the linear 

theory becomes infinite at m< 1. We investigate this paradox of the linear theoryofperfect 

fluid using the method of matching asymptotic expansions. 

When m<l, the linear theory (outer expansion) becomes unsuitable in some q--neighbor- 

hood of the point h = 0 where r> 0. The formulas (4.8) and (4.9) determinetheinnerlimit 

of the outer expansion for m = 1 and m< 1 respectively. The value of r and the order of 

magnitude of p(h) over the inner region are found from the condition of matching the inner 

limit with the outer limit, and from the estimation of the circulation h:r=2n-l,y-@. 

Consequently the inner expansion has the form 

p (h; q) = 4% (h,) + 0 (qn), h = q2”-1 h, (4.10) 

Substituting the expansion (4.10) into (4.2), we obtain the equation ofevolutionofthe cen- 

tral part of the self-similar jet for rn-< 1 

Solid boundaries do not appear in the inner problem, therefore the Chaplygin-Joukovskii con- 

dition becomes meaningless and must be replaced by the condition 

Imo(h, = co)=0 (4.12) 

which ensures the matching between the inner and outer expansion. 
It can be shown that (4.11) has no unbounded solutions when h,+ 0. Indeed, in the pres- 

ence of an unbounded solution the right-hand part of (4.11) will tend to a constant. But then 

the differential operator appearing in the left-hand side of the equation will only have 

bounded solutions which contradicts the initial assumption. Hence the velocity at the center 

of the jet is finite. Thus when n< 1 and the rate of flow q is sufficiently small, the 

self-similar jet exerts a cumulative effect: the rate of penetration of its narrowcentralpart 

(2 -q*) where a small portion of the circulation(h- qzn-') is concentrated,hasthe orderof qn 

andexceedsbyoneorderof magnitudethevelocityofthe main body of the jet which is of the 

order of q. 

5. Let us inspect the mode of flow with a free boundary. In this case the pressure 11 

along the discontinuity is the same and does not change with time. The component of the 

velocity v normal to the free boundary is equal to the rate of displacement of the jet front 

L, z (23~)~ [ 1 + (Tcj’J-“~ (5.1) 
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where y = y(z,t)describes the form of the free boundary. The tangential velocity component u 
determines the strength of the vortex sheet. 

To derive the equation of evolution, we introduce the following parameter alongthe free 
boundary: 

h-q-5 
@Pdt 

where cp is the velocity potential at the free boundary. Let us inspect the rateofvariation 
of this parameter Shi6t at the vortex point, i.e. at the point situated at the free boundary 
and moving along this boundary at the rate of u/2 (in contrast to a vortex point at the 
vortex sheet, such a point does not correspond to the value h = const). From the Bernoulli 
equation 

_$-f=Y 

we find 

Oh bcp PO-P Y2 
-_ 

8t=6t-- p -2 

The complex velocity of the point in question is equal to 

6I _;; +g$=*+,;* 
c% 

In accordance with the Sokhotskii formulas, the equation of evolution for the free bounddryis 
obtained by equating this velocity with the complex rate of flow awlaz: 

The equation of evolution for the free boundary of the jet (5.2) differs from (2.1) by the 
presence in its left-hand side of the second term proportional to the square of the velocity 
component v normal to the discontinuity and given by (5.1). In the case of a self-similar 
flow, the variables are reduced to their dimensionless form with help of the formulas (4.1) 
where h is formally replaced by r. The equation of evolution (5.2) assumes the form 

(5.3) 

p = a + i/3, fi’ = dfiida 

and the Chaplygin-Zhukovskii condition (4.3) remains in force. 
The outer solution of (5.3) coincides, for q<l, in the first approximation, with the 

solution of (4.21, the latter equation describing the outflow of a self-similar jet into a 
submerged space, since the order of the additional term in (5.3) is greater than the order of 
the velocity in the linear theory. In the inner expansion the orders of those two quantities 
are equal. We have 

OD 

&_)_Ef 1 (p -c.q3y dZ ’ dho 4xc, I+ (B’P -=- 2&,+ ~GI dho S[ 1 i ’ - fl PO) - 0 (b’) 0 (h,) -T) 1 4 (5.4) 
0 . 

and condition (4.12) holds. 
Just as for the equation (4.111, we can show that the solution is bounded as h-to. It 

follows therefore that the cumulative effect takes place also in the self-similarflowof fluid 
with a free boundary. 

Apart from the problem of jet automatics, the above problem can also be used to study 
three-dimensional stationary gas flows of which the above problem represents a two-dimensional 
analog. Indeed, if the narrow zone of separation is stretched along the direction of the 
unperturbed stream, then the longitudinal variable in the equations of gas dynamics degenerat- 
es and a law of plane flows becomes valid, in the first approximation to which the compres- 
sibility of the medium is neglected. The theory of wing with small aspect ratio, nonlinear 
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theory of wing with finite aspect ratio in a supersonic /4/ and subsonic /5/ flow, and a flow 

with local vortex sheet past bodies with arbitrary aspect ratio /6/ are the known examples of 

this. In this sense the plane nonstationary flows of fluid through a slit are equivalent to 

the detached flow past an arbitrary cut in a screen. An attached flow past an arbitrary cut 
in a wing was discussed in /7/. Asimilarproblem (with periodically distributed slits) arises 
in the course of dealing with the problem of filtration of gas through perforated boundaries 

with arbitrary slits, provided that the number R=Q/v is sufficiently large. The nonviscous 
mechanism of appearance of resistance to the filtration of gas, is connected with the forma- 
tion of vortex sheets moving away from the slit edges. Adoption of such an approach to the 
problem obviates the necessity of formulating the empirical boundary conditions at the per- 

forated walls. 

The author thanks G.M. Riabinkov and N.V. Abasov for help and valuable discussion. 
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